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Abstract

Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant
quantum computation. A preliminary requisite of quantum computation is the implementation of controlled dynamics of qubits. In
controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other
qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust
against certain types of error. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a tech-
nique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selec-
tively evolve a suitable subsystem where the control qubit is in state |1æ, through a closed circuit. By this evolution, the target qubit
gains a phase controlled by the state of the control qubit. Using the non-adiabatic geometric phase we demonstrate implementation
of Deutsch–Jozsa algorithm and Grover�s search algorithm in a two-qubit system.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Quantum states that differ only by an overall phase
cannot be distinguished by measurements in quantum
mechanics. Hence phases were thought to be unimpor-
tant until Berry made an important and interesting
observation regarding the behavior of pure quantum
systems in a slowly changing environment [1]. The adia-
batic theorem makes sure that, if a system is initially in
an eigenstate of the instantaneous Hamiltonian, it re-
mains so. When the environment (more precisely, the
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2005.07.025

* Corresponding author. Present address: Structural Biophysics
Laboratory, National Cancer Institute, P. O. Box B, Building-538,
Frederick, Maryland-21702, USA. Fax: +91 80 23601550.

E-mail addresses: rdas@ncifcrf.gov (R. Das), anilnmr@physics.
iisc.ernet.in (A. Kumar).
1 Present address: Department of Chemistry, Indian Institute of

Technology, Kanpur, India.
2 DAE/BRNS Senior Scientist.
Hamiltonian) returns to its initial state after undergoing
slow changes, the system acquires a measurable phase,
apart from the well-known dynamical phase, which is
purely of geometric origin [1]. Simon [2] showed this
to be a consequence of parallel transport in a curved
space appropriate to the quantum system. Berry�s phase
was reconsidered by Aharanov and Anandan, who shift-
ed the emphasis from changes in the environment, to the
motion of the pure quantum system itself and found that
the for all the changes in the environment, the same geo-
metric phase is obtained which is uniquely associated
with the motion of the pure quantum system and hence
enabled them to generalize Berry�s phase to non-adia-
batic motions [3]. For a spin half particle subjected to
a magnetic field B, the non-adiabatic cyclic Aharanov–
Anandan phase is just the solid angle determined by
the path in the projective Hilbert space [3].

Yet another interesting discovery in the fundamentals
of quantum physics was the observation that by access-
ing a large Hilbert space spanned by the linear combina-
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tion of quantum states and by intelligently manipulating
them, some of the problems intractable for classical com-
puters can be solved efficiently [4,5]. This idea of quan-
tum computation using coherent quantum mechanical
systems has excited a number of research groups [6,7].
Various physical systems including nuclear magnetic res-
onance (NMR) are being examined to built a suitable
physical device that would perform quantum informa-
tion processing and quantum simulations [8–11]. Also,
the quantum correlation inherently present in the entan-
gled quantum states was found to be useful for quantum
computation, communication, and cryptography [5].
Geometric quantum computing is a way of manipulating
quantum states using quantum gates based on geometric
phase shifts [12,13]. This approach is particularly useful
because of the built-in fault tolerance [14,15], which aris-
es due to the fact that geometric phases depend only
upon some global geometric features and it is robust
against certain errors and dephasing [12,13,16,17]. Even
the mixed state geometric phase in open systems was
found to be insensitive to dephasing [18].

In nuclear magnetic resonance, the acquisition of
geometric phase by a spin was first verified by Pines
et al. [19] in adiabatic regime by subjecting a nuclear
spin to an effective magnetic field that slowly sweeps a
cone. A similar approach was adopted by Jones et al.
[12,13] to demonstrate the construction of controlled
phase shift gates in a two-qubit system using adiabatic
geometric phase. Pines and co-workers [20] also studied
the geometric phase in non-adiabatic regime, namely the
Aharanov–Anandan phase, by NMR. They used a sys-
tem of two dipolar coupled identical proton spins which
form a three level system. A two level subsystem was
made to undergo a cyclic evolution in the Hilbert space
by applying a time-dependent magnetic field, while geo-
metric phase was observed in the modulation of the
coherence of the other two level subsystem [20]. Recent-
ly, non-adiabatic geometric phase has also been ob-
served for mixed states by NMR using evolution in
tilted Hamiltonian frame [21]. In the work reported
here, we have adopted a scheme similar to that of Pines
et al. [20] to demonstrate of controlled phase shift oper-
ation in a two-qubit system using non-adiabatic geomet-
ric phase by NMR. Compared to the earlier technique of
tilted Hamiltonian frame [21] and off-resonance irradia-
tion [12], the present method using selective excitation
remains fairly straightforward for higher qubit systems.
The transition selective method, however, has the disad-
vantage that it requires exponential time. On the other
hand, this method is exclusively applicable to many
other experimental systems such as quadrupolar and
strongly dipolar coupled spin systems that have been
proposed for NMR based QIP [22,23]. The geometric
controlled phase was used to implement Deutsch–Jozsa
(DJ) algorithm [24] and Grover�s search algorithm [25]
in the two-qubit system. To the best of our knowledge,
this is the first implementation of quantum algorithms
using geometric phase.
2. Use of non-adiabatic geometric phase

Consider a two qubit system, which has four eigen-
states |00æ, |01æ, |10æ, and |11æ. The two-state subsystem
of |10æ and |11æ can be taken through a circuit enclosing
a solid angle X [20]. If the other dynamical phases are
canceled during the process, these two states gain a
non-adiabatic phase purely due to geometric topology.
Since the operation is done selectively with the states
where first qubit is in state |1æ, this acts as controlled
phase where the second qubit gains a phase only when
the first qubit is |1æ [6,7,12].

The transport of the selected states through a closed
circuit can be accomplished by selective excitation. Such
selective excitation can be performed by pulses having a
small bandwidth which excite a selected transition in the
spectrum and leave the others unaffected [9,22,26–29]. In
the following, we consider geometric phase acquired by
two different paths in a Bloch sphere, respectively
known as slice circuit and triangular circuit [20].

2.1. Geometric phase acquired by a slice circuit

In a slice circuit, the state vector cuts a slice out of the
Bloch sphere, Fig. 1A. The slice circuit can be achieved
by two pulses A.B ¼ ðpÞj10i$j11i

h .ðpÞj10i$j11i
hþpþ/ , where the

pulses are applied from left to right. Here ðpÞj10i$j11i
h de-

notes a selective p-pulse on |10æ M |11æ transition with
phase h. The first ðpÞj10i$j11i

h pulse rotates the polariza-
tion vector of the subsystem through p about the axis
with azimuthal angle h in the x–y plane (Fig. 1). The
vector is brought back to its original position complet-
ing a closed circuit by the second p-pulse about the axis
in the x–y plane with azimuthal angle (h + p + /). The
resulting path encloses a solid angle of 2/. The operator
of the two pulses can be calculated as

A:B ¼ ðpÞj10i$j11i
h ðpÞj10i$j11i

hþpþ/

¼ exp½�iðI j10i$j11i
x cosðhÞ þ I j10i$j11i

y sinðhÞÞp�
� exp½�iðI j10i$j11i

x cosðhþ pþ /Þ þ I j10i$j11i
y sinðhþ pþ /ÞÞp�

¼

1 0 0 0

0 1 0 0

0 0 0 � sin h� i cos h

0 0 sin h� i cos h 0

0
BBB@

1
CCCA

�

1 0 0 0

0 1 0 0

0 0 0 sinðhþ /Þ þ i cosðhþ /Þ
0 0 � sinðhþ /Þ þ i cosðhþ /Þ 0

0
BBB@

1
CCCA

¼

1 0 0 0

0 1 0 0

0 0 ei/ 0

0 0 0 e�i/

0
BBB@

1
CCCA;

ð1Þ
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Fig. 1. (A) The transport of a selected subsystem of two states |ræ and |sæ through slice circuit [20]. (B) Corresponding pulse sequence. A and B are
transition selective pulses incorporated into a Hahn-echo [20], where A ¼ ðpÞjri$jsi

h and B ¼ ðpÞjri$jsi
hþpþ/. The path of the polarization vector under

applied r.f. pulses is shown as A and B in (A). Due to the A ¼ ðpÞjri$jsj
h pulse, the polarization traverses a path from +z to �z. It comes back to +z

along a different path if it is rotated about an axis with azimuthal angle (h + p + /), thereby enclosing a sliced circuit of solid angle 2/. (C) The
transport of a selected subsystem of two states |ræ and |sæ through a triangular circuit [20]. (D) Pulse sequence for implementation of the triangular
circuit given in (C). A ¼ ðp=2Þjri$jsi

h , C ¼ ð/Þjri$jsi
z and B ¼ ðp=2Þjri$jsi

hþp�/. The polarization vector is flipped to xy-plane by ðp=2Þjri$jsi
h , rotated about z-

axis by ð/Þjri$jsi
z and brought back to the z-axis by a (p/2)|ræM|sæ rotation about (h + p�/). The solid angle enclosed by the circuit is /.
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where I j10i$j11i
x and I j10i$j11i

y are the fictitious spin-1/2
operators [30] for the two-state subsystem of |10æ and
|11æ, given by

I j10i$j11i
x ¼ 1

2

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA and

I j10i$j11i
y ¼ 1

2

0 0 0 0

0 0 0 0

0 0 0 �i

0 0 i 0

0
BBB@

1
CCCA:

ð2Þ

Note that the combined operator of the two pulses in
Eq. (1) attributes a non-adiabatic geometric phase pro-
portional to the solid angle of the circuit traversed.
However, the phase it attributed only to the two states
where first qubit is in state |1æ. Since the selective excita-
tion does not perturb the other transitions, the subsys-
tem |00æM|01æ do not gain any phase. This is
analogous to the controlled phase where the second qu-
bit acquires a phase controlled by the state of first qubit
[7,12].

To demonstrate the operation of a controlled geomet-
ric phase, we have taken the two qubit system of carbon-
13-labeled chloroform (13CHCl3), where the two nuclear
spins 13C and 1H forms the two-qubit system. The sam-
ple of 13CHCl3 was dissolved in the solvent of CDCl3,
and experiments were performed at room temperature
at a magnetic field of B0 = 11.2 T. At this high field
the resonance frequency of proton is 500 MHz and that
of carbon is 125 MHz. The indirect spin–spin coupling
(the J-coupling) between the two qubits is 210 Hz. Start-
ing from equilibrium, the |00æ pseudopure state was pre-
pared by spatial averaging method using the pulse
sequence [21]

ðp=3Þ2x � Gz � ðp=4Þ2x �
1

2J
� ðp=4Þ2�y � Gz; ð3Þ

where the pulses were applied on the second qubit,
denoted by 2 in superscript, which in our case is the pro-
ton spin. After creation of pps, a pseudo-Hadamard
gate [31,32] was applied on the first qubit, which in
our case was 13C. The pseudo-Hadamard gate was
implemented by a ðp=2Þ1y , where the superscript denotes
the qubit and the subscript denotes the phase of the
pulse [31,32]. This gate creates a uniform superposition
of the first qubit |00æ + |10æ. The operation of the con-
trolled phase operator would now transform the state
into |00æ + ei/|10æ. For the slice circuit, the proton
dynamical phase would vanish since the applied field is
always orthogonal to the polarization vector, generating
parallel transport [20]. However, the carbon coherence
would undergo evolution due to the internal Hamiltoni-
an during the pulses. Hence the pulse sequence was
incorporated into a Hahn-echo [33,34] sequence of the
form s � (p)x � s, where the pulses were applied during
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the second s period, as given in Fig. 1B. The intermedi-
ate (p)-pulse refocuses inhomogeneity of the B0 field, the
chemical shift of carbon and its J-coupling to the pro-
ton. However, to restore the state of the first qubit al-
tered by the (p)-pulse, the pulse sequence of Eq. (1)
has to be supplemented by adding a ðpÞ1�x pulse
(Fig. 1B), yielding the sequence

ðpÞ1x .ðpÞ
j00i$j01i
h .ðpÞj00i$j01i

hþpþ/ .ðpÞ1�x

¼

0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

0
BBB@

1
CCCA �

ei/ 0 0 0

0 e�i/ 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

�

0 0 �i 0

0 0 0 �i

�i 0 0 0

0 �i 0 0

0
BBB@

1
CCCA

¼

1 0 0 0

0 1 0 0

0 0 ei/ 0

0 0 0 e�i/

0
BBB@

1
CCCA;

ð4Þ

where the selective pulses were applied on the |00æM|01æ
transition to achieve the exact form of controlled phase.
The selective excitation was obtained with Gaussian
shaped pulses of 13.2 ms duration. The non-adiabatic
geometric phase was observed in the phase of
|00æM|10æ coherence. We have observed the geometric
phase for the slice circuit with various solid angles (2/),
each time varying the phase / of the second selective
(p)-pulse. The corresponding spectra are given in
Fig. 2C, where the |00æM|10æ shows a phase change of
ei/. For / = 0, there is no phase change and the peak is
absorptive. With increase of /, the phase of the peak
changes and it becomes dispersive for / = p/2, and sub-
sequently, a negative absorptive for / = p.

The three small lines in the spectra come from the
naturally abundant 13C signal of CDCl3, which provide
a reference. Since all dynamical phases due to evolution
under chemical shift and J-couplings were refocused, the
solvent 13C signal is absorptive in all the spectra. How-
ever, solute 13C signal gains phase because it is coupled
to the protons, one of whose transition is taken through
a closed circuit. This result thus provides a graphic dis-
play of geometric phase by non-adiabatic evolution. To
accurately read the phase angle of each spectrum in
Fig. 2C, a zero-order phase correction was applied to
the spectra in Fig. 2C, till the observed peak became
absorptive. The phase change of |00æM|10æ coherence
due to geometric phase is plotted against the solid angle
(2/) in Fig. 3. The graph in Fig. 3 shows the high fidelity
of the experimental implementation of the slice circuit in
this case.
2.2. Geometric phase acquired by a triangular circuit

In the triangular circuit, the state vector traverses a
triangular path on the Bloch sphere Fig. 1C [20]. The
solid angle enclosed by the triangular circuit of
Fig. 1C is /. The controlled phase shift can be imple-
mented by the non-adiabatic phase acquired when the
appropriate subsystem goes through this circuit. The
pulse sequence for the circuit and the corresponding
operator can be calculated, similar to that of the sliced
circuit, as

A:C:B ¼ ðp=2Þj10i$j11i
h :ð/Þj10i$j11i

z :ðp=2Þj10i$j11i
hþp�/

¼

1 0 0 0

0 1 0 0

0 0 1ffiffi
2

p � sin h�i cos hffiffi
2

p

0 0 sin h�i cos h
1ffiffi
2

p
1ffiffi
2

p

0
BBBBBB@

1
CCCCCCA

�

1 0 0 0

0 1 0 0

0 0 e�i/=2 0

0 0 0 ei/=2

0
BBBBB@

1
CCCCCA

�

1 0 0 0

0 1 0 0

0 0 1ffiffi
2

p sinðh�/Þþi cosðh�/Þffiffi
2

p

0 0 � sinðh�/Þþi cosðh�/Þffiffi
2

p 1ffiffi
2

p

0
BBBBB@

1
CCCCCA

¼

1 0 0 0

0 1 0 0

0 0 e�i/=2 0

0 0 0 ei/=2

0
BBBBB@

1
CCCCCA
;

ð5Þ

The intermediate ð/Þj10i$j11i
z pulse can be applied by

the composite z-pulse sequence ðp=2Þj10i$j11i
y

ð/Þj10i$j11i
�x ðp=2Þj10i$j11i

�y [35,36].
In the experiments, we have chosen h = 3p/2. The

state of |00æ + |10æ was prepared and then the pulse se-
quence of Fig. 1D was applied. Similar to the slice cir-
cuit, the sequence was incorporated in a Hahn-echo
and the pulses were applied on the |00æM|01æ transition.
The operator of Eq. (5) transforms |00æ + |10æ to
|00æ + e�i//2|10æ. The phase of the |00æM|10æ was ob-
served for various /, by changing the angle of the
z-pulse and the phase of the last pulse in Eq. (5). The
spectra are given in Fig. 4. Once again, the peak changes
from absorptive to dispersive and then to a negative
absorptive in correspondence with the change of /.

However, there are two major differences between the
spectra of Figs. 2C and 4C. Note that after the phase
gate, the state of the system is |00æ + ei/|10æ for slice cir-
cuit and |00æ + e�i//2|10æ for triangular circuit. This is
because the solid angle of the slice circuit if 2/, whereas
that of the triangular circuit is /. Hence, in the slice cir-
cuit the coherences become a negative absorptive for /
= p, whereas in the triangle circuit the same observation
is obtained for / = 2p. Moreover, the phase of the puls-
es corresponding to the triangle circuit is chosen such
that the sign of phase is opposite to that of the slice cir-
cuit. This difference is clearly reflected in the sign of the
coherences between Figs. 2C and 4C. A plot of the abso-
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lute value of observed phase change against solid angle
is given in Fig. 5, whose high fidelity validate their use
for quantum computing.

It might be mentioned that the applied field must be
perpendicular to the magnetization to generate parallel
transport [20]. Thus apriori knowledge of the input mag-
netization is necessary to design appropriate pulse
sequences for the controlled phase shift operator.
3. Deutsch–Jozsa algorithm

Deutsch–Jozsa (DJ) algorithm provides a demonstra-
tion of the advantage of quantum superposition over
classical computing [24].The DJ algorithm determines
the type of an unknown function when it is either con-
stant or balanced. In the simplest case, f (x) maps a sin-
gle bit to a single bit. The function is called constant if
f (x) is independent of x and it is balanced if f (x) is zero
for one value of x and unity for the other value. For N
qubit system, f (x1,x2, . . ., xN) is constant if it is indepen-
dent of xi and balanced if it is zero for half the values of
xi and unity for the other half. Classically it requires
(2N�1 + 1) function calls to check if f (x1,x2, . . ., xN) is
constant or balanced. However the DJ algorithm would
require only a single function call [24]. The Cleve version
of DJ algorithm implemented by using a unitary trans-
formation by the propagator Uf while adding an extra
qubit, is given by [37]

jx1; x2; . . . ; xNijxNþ1i!
Uf jx1; x2; . . . ; xNijxNþ1

� f ðx1; x2; . . . ; xN Þi ð6Þ
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The four possible functions for the single-bit DJ algo-
rithm are f00, f11, f10, and f01. f00 (x) = 0 for x = 0 or 1,
f11 (x) = 1 for x = 0 or 1, f10 (x) = 1 or 0 corresponding
to x = 0 or 1, while f01 (x) = 0 or 1 corresponding to
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Fig. 4. Observation of non-adiabatic geometric phase when the subsystem i
spectrum of 13CHCl3. (B) The

13C coherence of the prepared |00æ + |10æ state.
goes through the triangular closed circuit. The coherence changes from absor
/. It may be noted that sign of phase of the coherence is opposite to that o
x = 0 or 1. The unitary transformations corresponding
to the four possible propagators Uf are:

Uf00 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA; Uf11 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA;

Uf10 ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA; Uf01 ¼

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA:

ð7Þ

For higher qubits the functions are easy to evaluate
using Eq. (6). DJ-algorithm has been demonstrated
using dynamic phase by several research groups
[28,31,38,39].

The quantum circuit for single-bit Cleve version of
DJ algorithm is given in Fig. 6A [38]. The algorithm
starts with |00æ pseudopure state. The pair of pseudo-
Hadamard gates ðp=2Þ1yðp=2Þ

2
�y create superposition of

the form ½ðj0i þ j1iÞ=
ffiffiffi
2

p
�½ðj0i � j1iÞ=

ffiffiffi
2

p
�. Then the

operator Uf is applied. When the function is constant,
i.e., f (0) = f (1), the input qubit is in the state
ðj0i þ j1iÞ=

ffiffiffi
2

p
, else the function is balanced in which

case it is in the state ðj0i � j1iÞ=
ffiffiffi
2

p
. Thus, the answer
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s taken through the triangular circuit of Fig. 1C. (A) Equilibrium 13C
(C) The 13C coherence of the state |00æ + e�i//2|10æ, after the subsystem
ptive to dispersive and then to a negative absorptive with the change of
f Fig. 2C.
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is stored in the relative phase between the two states of
the input qubit. A final pair of pseudo-Hadamard gates
ðp=2Þ1�yðp=2Þ

2
y converts the superposition back into the

eigenstates. The work qubit comes back to state |0æ,
where as the input qubit becomes |0æ or |1æ correspond-
ing to the function being constant or balanced.

The operator ofUf00 is identitymatrix and corresponds
to no operation. The operator ofUf11 can be achieved by a
(p)x pulse on the second qubit. In this experiment, unlike
Section 2, we label proton as the first qubit and carbon as
the second qubit, and consequently the (p)x pulse was ap-
plied on the carbon. The Uf10 operator is a controlled-
NOTgatewhich flips the second qubitwhen the first qubit
is |1æ. This gate can be achieved by a controlled phase gate
sandwiched between two pseudo-Hadamard gates on the
secondqubit [31],Uf10 ¼ h� C11ðpÞ � h�1,where the con-
trolled phase gate is of the form

C11ð/Þ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei/

0
BBB@

1
CCCA. ð8Þ

This precise form of controlled phase gate can be
achieved by a recursive use of the phase operators dem-
onstrated in Section 2. Since the operator A.B given in
Eq. (1) attributes a phase ei/ to the state |10æ and e�i/

to the state |11æ, we denote it as C10 (/).C11 (�/), where

A.B ¼ ½C10ð/Þ.C11ð�/Þ� ¼

1 0 0 0

0 1 0 0

0 0 ei/ 0

0 0 0 e�i/

0
BBB@

1
CCCA. ð9Þ

The phase gate C11 (/) can be constructed by a suitable
combination of these operators
½C00ð�/=4Þ:C10ð/=4Þ� � ½C01ð�/=4Þ:C11ð/=4Þ� � ½C10ð�/=2Þ:C11ð/=2Þ�

¼

e�i/=4 0 0 0

0 1 0 0

0 0 ei/=4 0

0 0 0 1

0
BBB@

1
CCCA�

1 0 0 0

0 e�i/=4 0 0

0 0 1 0

0 0 0 ei/=4

0
BBB@

1
CCCA

�

1 0 0 0

0 1 0 0

0 0 e�i/=2 0

0 0 0 ei/=2

0
BBB@

1
CCCA ¼

e�i/=4 0 0 0

0 e�i/=4 0 0

0 0 e�i/=4 0

0 0 0 ei3/=4

0
BBB@

1
CCCA

¼ e�i/=4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei/

0
BBB@

1
CCCA

¼ e�i/=4C11ð/Þ:
ð10Þ

Note that if performed in fault-tolerant manner by using
non-adiabatic geometric phase, the first gate requires a
rotation of the transition |00æ M |10æ through a closed
circuit. We have used the slice circuit, where it requires
a sequence of two p-pulses, ðpÞj00i$j10i

h ðpÞj00i$j10i
hþp�/=4. Similar-

ly, the second phase operator of Eq. (7) can be achieved
by the pulse sequence ðpÞj01i$j11i

h ðpÞj01i$j11i
hþp�/=4. Note that

these two sequence require pulsing of both the transi-
tions of first qubit, |00æ M |10æ for the first gate and
|01æ M |11æ for the second. Hence, they can be performed
simultaneously by a pair of spin-selective pulses
ðpÞ1hðpÞ

1
hþp�/=4, where the pulses are applied on the first

qubit (denoted by superscript). Thus,

C11ð/Þ ¼ ðpÞ1h.ðpÞ
1
hþp�/=4.ðpÞ

j10i$j11i
h .ðpÞj10i$j11i

hþp�/=2. ð11Þ

In this case / = p, and we have chosen h = 3p/2. The
last two pulses are however transition selective pulses,
which were incorporated into a refocusing sequence,
s� ðp=2Þ1x � s� ðp=2Þ2x � s� ðp=2Þ1x � s� ðp=2Þ2x , where
the selective pulses were applied in the last s period,
and the pulses were applied on the |00æ M |01æ transition.
It may be noted that the triangular circuit could have
also been used for the same purpose. The pseudo-Had-
amard pulses on second qubit were achieved by
h¼ ðp=2Þ2y and h�1 ¼ ðp=2Þ2�y pulses.

The operator of Uf01 can be implemented in the sim-
ilar manner by h � C00 (p) � h�1, where C00 (/) can be
implemented by

C00ð/Þ ¼ ðpÞ1h.ðpÞ
1
hþpþ/=4.ðpÞ

j10i$j11i
h .ðpÞj00i$j01i

hþpþ/=2. ð12Þ

The equilibrium spectra of the two qubits are given in
Fig. 6B. After creating the superposition from pps,
applying the various Uf, and applying the last set of (p/
2) pulses, the spectra of proton and carbon were recorded
in two different experiments by selective (p/2) pulses after
a gradient. The spectra corresponding to various func-
tions are given in Figs. 6C, E, G, and I. The intensities
of the peaks in the spectra provide a measure of the diag-
onal elements of the density matrix. The complete tomo-
graphed [40,41] density matrices in each case is given in
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Fig. 6. Implementation of DJ-algorithm using non-adiabatic geometric phase in a two-qubit system of 13CHCl3. (A) Quantum circuit for
implementation of DJ-algorithm in a two-qubit system [38]. h = (p/2)y and h�1 = (p/2)�y (B) Equilibrium

1H and 13C spectra. (C) The 1H and 13C
spectra obtained after completion of the quantum circuit of (A) for Uf00 , and application of a gradient pulse followed by (p/2) pulses on 1H and 13C
individually. (D) The complete tomographed density matrix [40]. The real and imaginary parts of the density matrix are given separately with the
imaginary part being magnified five times (·5). (E, G, and I) Respective spectra obtained after Uf11 , Uf01 and Uf10 . (F, H, and J) The corresponding
tomographed density matrices. For constant cases (C) and (E), the final state is |00æ, as shown in (D) and (F). For balanced cases (G) and (I), the final
state in |10æ, as shown in (H) and (I). The diagonal elements have a fidelity of 95%, while off-diagonal parts have a fidelity of 87%.
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Figs. 6D, F, H, and J. WhenUf00 andUf11 are implement-
ed, the final state is |00æ, and since the state of input qubit
is |0æ, the corresponding functions f00 and f11 are inferred
to be constant. Whereas in the case of Uf01 and Uf10 , the
final state of the system in |10æ. The state of input qubit
being |1æ, the corresponding functions f01 and f10 are bal-
anced. Theoretically, it is expected that the density matri-
ces will have only the populations corresponding to the
final pure states. There were however errors due to r.f.
inhomogeneity and relaxation. The deviation from the
expected results are within 13%.
4. Grover�s search algorithm

Grover�s search algorithm can search an unsorted
database of size N in Oð

ffiffiffiffi
N

p
Þ steps while a classical

search would require O (N) steps [25]. Several workers
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by NMR, all using dynamic phase [32,39,42–44] have
earlier demonstrated Grover�s search algorithm. The
quantum circuit for implementing Grover�s search algo-
rithm on two-qubit system is given in Fig. 7A. The algo-
rithm starts from a |00æ pseudopure state. A uniform
superposition of all states are created by the initial Had-
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Fig. 7. Implementation of Grover�s search algorithm using non-adiabatic geo
implementation of Grover�s search algorithm in a two-qubit system [42,32
geometric phase using selective excitation by 13.2 ms (6/J) long Gaussian sh
spectra obtained after completion of the quantum circuit of (A) for |xæ = |00æ,
13C individually. The intensities of the various lines in the spectrum give th
density matrix [40] after implementation of the quantum circuit (A) for x

separately and the imaginary part is magnified five times (5·). The spectra
matrices (F, H and J) respectively when |xæ = |01æ, |xæ = |10æ, and |xæ = |11æ.
after implementation of the search algorithm with a fidelity more than 85%.
amard gates (H). Then the sign of the searched state ‘‘x’’
is inverted by the oracle through the operator

Ux ¼ I � 2jxihxj; ð13Þ

where Ux is a controlled phase shift gate Cx (p). C11 (p)
and C00 (p) gates were implemented by the pulse
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metric phase in a two-qubit system of 13CHCl3. (A) Quantum circuit for
]. The Ux and U00 phase gates were implemented by non-adiabatic
aped pulses. (B) Equilibrium 1H and 13C spectra. (C) The 1H and 13C
and application of a gradient pulse followed by (p/2) pulses on 1H and
e populations of the density matrix. (D) The complete tomographed
= |00æ. The real and imaginary parts of the density matrix are given
obtained (E, G, and I) and the corresponding tomographed density
In each case the searched state |xæ was found with highest probability



R. Das et al. / Journal of Magnetic Resonance 177 (2005) 318–328 327
sequences given in Eqs. (11) and (12), respectively. The
oracle for the other two states |01æ and |10æ were imple-
mented by the sequences,

C01ð/Þ ¼ ðpÞ1h.ðpÞ
1
hþpþ/=4.ðpÞ

j10i$j11i
h .ðpÞj00i$j01i

hþp�/=2 ;

C10ð/Þ ¼ ðpÞ1h.ðpÞ
1
hþp�/=4.ðpÞ

j10i$j11i
h .ðpÞj10i$j11i

hþpþ/=2 ; ð14Þ

where / = p, as required in our case.
An inversion about mean is performed on all the

states by a diffusion operator HU00H [25], where

U 00 ¼ I � 2j00ih00j; ð15Þ
where U00 is nothing but C00(p), and was implemented
by the pulse sequence of Eq. (12). For an N-sized data-
base the algorithm requires Oð

ffiffiffiffi
N

p
Þ iterations of Ux-

HU00H [25]. For a two-qubit system with four states,
one iteration is enough [32,42]. We have created a |00æ
pseudopure state using Eq. (3) and applied the quantum
circuit of Fig. 7A, for |xæ = |00æ, |01æ, |10æ, and |11æ.
Finally, the spectra of proton and carbon were recorded
individually in two different experiments by selective (p/
2) pulses after a gradient. The complete tomographed
density matrices in each case is given in Figs. 7D, F,
H, and J. In each case, the searched state |xæ was found
to be with highest probability. Ideally in a two-qubit sys-
tem, probability should exist only in the searched state,
and there should be no coherences. Experimentally how-
ever, other states were also found with low probability,
along with some coherences in the off-diagonal elements
of the density matrix. These errors are mainly due to
relaxation and imperfection of pulses caused by r.f.
inhomogeneity. Imperfection of r.f. pulses can cause
imperfect refocusing of dynamic phase. However, it
was found that setting the duration of selective pulses
to multiples of (2/J) yielded better results. We have used
13.2 ms (6/J) duration Gaussian shaped pulses. The
maximum errors in the diagonal elements are within
10% and that in the off-diagonal elements are within
15%.
5. Conclusion

A technique of using non-adiabatic geometric phase
for quantum computing by NMR is demonstrated.
The technique uses selective excitation of subsystems,
and is straightforward for higher qubit systems provided
the spectrum is well resolved. Since the non-adiabatic
geometric phase does not depend on the details of the
path traversed, it is insusceptible to certain errors yield-
ing inherently fault-tolerant quantum computation
[14,15]. The controlled geometric phase operators were
also used to implement DJ-algorithm and Grover�s
search algorithm in a two-qubit system. Implementation
of fault-tolerant controlled phase using adiabatic geo-
metric phase demands that the evolution should be �adi-
abatic,� which requires long experimental time. To avoid
decoherence, use of non-adiabatic geometric phase
might be utile.
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